标准搜索结果: 'GB 50009-2012英文版'
标准号码 | 内文 | 价格(元) | 第2步 | 交付天数[PDF] | 标准名称 | 相关标准 |
GB 50009-2012 |
英文版
| 310 |
购买全文
|
现货, 9秒内下载
|
建筑结构荷载规范(不含条文说明)
|
GB 50009-2012
|
标准编号: GB 50009-2012 (GB50009-2012) 中文名称: 建筑结构荷载规范(附条文说明) 英文名称: Load code for the design of building structures [Quasi-Official / Academic version - scanned PDF, translated by Standard Committee / Research Institute in China] 行业: 国家标准 中标分类: P20 国际标准分类: 91.080 字数估计: 263,230 旧标准 (被替代): GB 50009-2001 引用标准: GB 50038; GB 50153 起草单位: 中国建筑科学研究院 归口单位: 中国建筑科学研究院 标准依据: 住房和城乡建设部公告第1405号 范围: 本规范适用于建筑工程的结构设计。
GB 50009-2012: 建筑结构荷载规范(不含条文说明)
GB 50009-2012 英文名称: Load code for the design of building structures
中华人民共和国国家标准
GB 50009-2012
建筑结构荷载规范
中华人民共和国住房和城乡建设部
中华人民共和国国家质量监督检验检疫总局联合发布
中华人民共和国国家标准
1 总 则
1.0.1 为了适应建筑结构设计的需要,符合安全适用、经济合 理的要求,制定本规范。
1.0.2 本规范适用于建筑工程的结构设计。
1.0.3 本规范依据国家标准《工程结构可靠性设计统一标准》 GB 50153-2008规定的基本准则制订。
1.0.4 建筑结构设计中涉及的作用应包括直接作用(荷载)和 间接作用。本规范仅对荷载和温度作用作
出规定,有关可变荷载 的规定同样适用于温度作用。
1.0.5 建筑结构设计中涉及的荷载,除应符合本规范的规定外, 尚应符合国家现行有关标准的规定。
3 荷载分类和荷载组合
3.1 荷载分类和荷载代表值
3.1.1 建筑结构的荷载可分为下列三类:
1 永久荷载,包括结构自重、土压力、预应力等。
2 可变荷载,包括楼面活荷载、屋面活荷载和积灰荷载、
吊车荷载、风荷载、雪荷载、温度作用等。
3 偶然荷载,包括爆炸力、撞击力等。
3.1.2 建筑结构设计时,应按下列规定对不同荷载采用不同的 代表值:
1 对永久荷载应采用标准值作为代表值;
2 对可变荷载应根据设计要求采用标准值、组合值、频遇
值或准永久值作为代表值;
3 对偶然荷载应按建筑结构使用的特点确定其代表值。
3.1.3 确定可变荷载代表值时应采用50年设计基准期。
3.1.4 荷载的标准值,应按本规范各章的规定采用。
3.1.5 承载能力极限状态设计或正常使用极限状态按标准组合 设计时,对可变荷载应按规定的
荷载组合采用荷载的组合值或标 准值作为其荷载代表值。可变荷载的组合值,应为可变荷载的标
准值乘以荷载组合值系数。
3.1.6 正常使用极限状态按频遇组合设计时,应采用可变荷载 的频遇值或准永久值作为其荷载
代表值;按准永久组合设计时, 应采用可变荷载的准永久值作为其荷载代表值。可变荷载的频遇值,
应为可变荷载标准值乘以频遇值系数。可变荷载准永久值, 应为可变荷载标准值乘以准永久值系数。
3.2 荷 载 组 合
3.2.1 建筑结构设计应根据使用过程中在结构上可能同时出现 的荷载,按承载能力极限状态和正常
使用极限状态分别进行荷载 组合,并应取各自的最不利的组合进行设计。
3.2.2 对于承载能力极限状态,应按荷载的基本组合或偶然组 合计算荷载组合的效应设计值,并应
采用下列设计表达式进行 设计:
3.2.3 荷载基本组合的效应设计值Sa, 应从下列荷载组合值中 取用最不利的效应设计值确定:
1 由可变荷载控制的效应设计值,应按下式进行计算:
2 由永久荷载控制的效应设计值,应按下式进行计算:
3.2.4 基本组合的荷载分项系数,应按下列规定采用:
1 永久荷载的分项系数应符合下列规定:
1)当永久荷载效应对结构不利时,对由可变荷载效应控
制的组合应取1.2,对由永久荷载效应控制的组合应取1.35;
2)当永久荷载效应对结构有利时,不应大于1.0。
2 可变荷载的分项系数应符合下列规定:
1)对标准值大于4kN/m² 的工业房屋楼面结构的活荷载,应取1.3;
2)其他情况,应取1.4。
3 对结构的倾覆、滑移或漂浮验算,荷载的分项系数应满 足有关的建筑结构设计规范的规定。
3.2.5 可变荷载考虑设计使用年限的调整系数Y. 应按下列规定采用:
1 楼面和屋面活荷载考虑设计使用年限的调整系数 Y 应按 表3.2.5采用。
3.2.6 荷载偶然组合的效应设计值 Sa 可按下列规定采用:
1 用于承载能力极限状态计算的效应设计值,应按下式进 行计算:
2 用于偶然事件发生后受损结构整体稳固性验算的效应设 计值,应按下式进行计算:
3.2.7 对于正常使用极限状态,应根据不同的设计要求,采用 荷载的标准组合、频遇组合或准永久
组合,并应按下列设计表达 式进行设计:
3.2.8 荷载标准组合的效应设计值Sa 应按下式进行计算:
3.2.9 荷载频遇组合的效应设计值Sa 应按下式进行计算:
3.2.10 荷载准永久组合的效应设计值Sa 应按下式进行计算:
4 永 久 荷 载
4.0.1 永久荷载应包括结构构件、围护构件、面层及装饰、固 定设备、长期储物的自重,土压力、
水压力,以及其他需要按永 久荷载考虑的荷载。
4.0.2 结构自重的标准值可按结构构件的设计尺寸与材料单位 体积的自重计算确定。
4.0.3 一般材料和构件的单位自重可取其平均值,对于自重变 异较大的材料和构件,自重的标
准值应根据对结构的不利或有利 状态,分别取上限值或下限值。常用材料和构件单位体积的自重
可按本规范附录 A 采用。
4.0.4 固定隔墙的自重可按永久荷载考虑,位置可灵活布置的 隔墙自重应按可变荷载考虑。
5 楼面和屋面活荷载
5.1 民用建筑楼面均布活荷载
5.1.1 民用建筑楼面均布活荷载的标准值及其组合值系数、 频遇值系数和准永久值系数的取值,
不应小于表5 . 1 . 1 的 规定。
5.1.2 设计楼面梁、墙、柱及基础时,本规范表5.1.1 中楼面 活荷载标准值的折减系数取值不应
小于下列规定:
1 设计楼面梁时:
1)第1(1)项当楼面梁从属面积超过25m² 时,应 取0.9;
2)第1(2)~7项当楼面梁从属面积超过50m² 时,应取0.9;
3)第8项对单向板楼盖的次梁和槽形板的纵肋应取0.8, 对单向板楼盖的主梁应取0.6,对双向板楼盖的
4) 第9~13项应采用与所属房屋类别相同的折减系数。
2 设计墙、柱和基础时:
1)第1(1)项应按表5.1.2规定采用;
2)第1(2)~7项应采用与其楼面梁相同的折减系数;
3)第8项的客车,对单向板楼盖应取0.5,对双向板楼
盖和无梁楼盖应取0.8;
4)第9~13项应采用与所属房屋类别相同的折减系数。
注:楼面梁的从属面积应按梁两侧各延伸二分之一梁间距的范围内的 实际面积确定。
5.1.3 设计墙、柱时,本规范表5.1.1中第8项的消防车活荷 载可按实际情况考虑;设计基础时可
5.1.4 楼面结构上的局部荷载可按本规范附录C 的规定,换算为等效均布活荷载。
5.2 工业建筑楼面活荷载
5.2.1 工业建筑楼面在生产使用或安装检修时,由设备、管道、
运输工具及可能拆移的隔墙产生的局部荷载,均应按实际情况考 虑,可采用等效均布活荷载代替。
对设备位置固定的情况,可直 接按固定位置对结构进行计算,但应考虑因设备安装和维修过程 中的
位置变化可能出现的最不利效应。工业建筑楼面堆放原料或 成品较多、较重的区域,应按实际情况
考虑; 一般的堆放情况可 按均布活荷载或等效均布活荷载考虑。
注:1 楼面等效均布活荷载,包括计算次梁、主梁和基础时的楼面活 荷载,可分别按本规范附录C
的规定确定;
工车间,当缺乏资料时,可 按本规范附录 D 采用。
5.2.2 工业建筑楼面(包括工作平台)上无设备区域的操作荷载, 包括操作人员、 一般工具、
零星原料和成品的自重,可按均布活荷 载2.0kN/m² 考虑。在设备所占区域内可不考虑操作荷载
和堆料荷 载。生产车间的楼梯活荷载,可按实际情况采用,但不宜小于 3.5kN/m²。 生产车间的
参观走廊活荷载,可采用3.5kN/m²。
5.2.3 工业建筑楼面活荷载的组合值系数、频遇值系数和准永 久值系数除本规范附录D 中给出的
以外,应按实际情况采用; 但在任何情况下,组合值和频遇值系数不应小于0.7,准永久值 系数不应
小于0.6。
5.3 屋面活荷载
和准永久值系数的取值,不 应小于表5.3.1的规定。
5.3.2 屋面直升机停机坪荷载应按下列规定采用:
1 屋面直升机停机坪荷载应按局部荷载考虑,或根据局部 荷载换算为等效均布荷载考虑。局部荷
载标准值应按直升机实际 最大起飞重量确定,当没有机型技术资料时,可按表5.3.2的规 定选用局
部荷载标准值及作用面积。
2 屋面直升机停机坪的等效均布荷载标准值不应低于 5.0kN/m²。
3 屋面直升机停机坪荷载的组合值系数应取0.7,频遇值 系数应取0.6,准永久值系数应取0。
GB 50009-2012
GB
NATIONAL STANDARD OF THE
PEOPLE’S REPUBLIC OF CHINA
UDC
P GB 50009-2012
Load Code for the Design of Building Structures
ISSUED ON: MAY 28, 2012
IMPLEMENTED ON: OCTOBER 1, 2012
Issued by: Ministry of Housing and Urban-Rural Construction of the People’s Republic
of China;
General Administration of Quality Supervision, Inspection and Quarantine
of the People’s Republic of China.
Table of Contents
1 General Provisions ... 8
2 Terms and Symbols ... 9
2.1 Terms ... 9
2.2 Symbols ... 11
3 Classification and Combination of Loads ... 15
3.1 Classification of Loads and Representative Values of Loads ... 15
3.2 Combination of Loads ... 15
4 Permanent Load ... 20
5 Live Load on Floors and Roofs ... 21
5.1 Uniformly Distributed Live Loads on Floors in Civil Buildings ... 21
5.2 Live Loads on Floors in Industrial Buildings ... 23
5.3 Live Loads on Roofs ... 24
5.4 Ash Load on Roofs ... 25
5.5 Construction and Maintenance Loads, Horizontal and Vertical Loads on Railings ... 26
5.6 Dynamic Coefficient ... 27
6 Crane Load ... 28
6.1 Vertical and Horizontal Crane Loads ... 28
6.2 Combination of Multi-cranes ... 28
6.3 Dynamic Coefficients of Crane Loads ... 29
6.4 Combination Value, Frequent Value and Quasi-permanent Value of Crane Load ... 29
7 Snow Load ... 30
7.1 Characteristic Value of Snow Load and Reference Snow Pressure ... 30
7.2 Distribution Factor for Roof Snow Load ... 30
8 Wind Load ... 34
8.1 Characteristic Value of Wind Load and Reference Wind Pressure ... 34
8.2 Exposure Factor for Wind Pressure ... 35
8.3 Shape Factor of Wind Load ... 36
8.4 Along-wind Vibration and Dynamic Response Factor ... 57
8.5 Across-wind and Wind-induced Torsional Vibration ... 59
8.6 Gust Factor ... 61
9 Thermal Action ... 62
9.1 General Requirements ... 62
9.2 Reference Air Temperature ... 62
9.3 Uniform Temperature Action... 63
10 Accidental Load ... 64
10.1 General Requirements ... 64
10.2 Explosion ... 64
10.3 Impact ... 65
Appendix A Self-weight of Commonly Used Materials and Members ... 66
Appendix B Reduction Factor of Fire Engine Load Accounting for the Influence of Covered
Soil ... 78
Appendix C Determination Method of Equivalent Uniformly Distributed Live Loads on
Floors ... 79
Appendix D Live Loads on Floors of Industrial Buildings ... 83
Appendix E Determination Method of Reference Snow Pressure, Wind Pressure and
Temperature ... 88
Appendix F Empirical Formula for Fundamental Natural Period of Structures ... 118
F.1 High-rise Structures ... 118
F.2 Tall Buildings ... 120
Appendix G Approximate Vibration Mode Shape of Structures ... 121
Appendix H Equivalent Wind Load for Across-wind and Torsional Vibration ... 123
H.1 Equivalent Wind Load for Across-wind Vibration of Structures of Circular Section ... 123
H.2 Equivalent Wind Load for Across-wind Vibration of Structures of Rectangular Section . 124
H.3 Equivalent Wind Load for Torsional Vibration of Structures of Rectangular Section ... 129
Appendix J Acceleration of Wind Induced Along-wind and Across-wind Vibration for Tall
Buildings ... 131
J.2 Calculation of Acceleration of Across-wind Vibration ... 132
Explanation of Wording in this Code ... 134
List of Quoted Standards ... 135
1 General Provisions
1.0.1 This code is formulated with a view to adapting the need of the building structure design and
meeting the requirements of safety and usability, economy and rationality.
1.0.2 This code is applicable to the structural design of building engineering.
1.0.3 This code is formulated in accordance with the basic principles specified in the national
standard “Unified Standard for Reliability Design of Engineering Structures” GB 50153−2008.
indirect action. This code only specifies load and thermal action, and the provisions for the relevant
variable load are also applicable to the thermal action.
1.0.5 The loads concerned in the building structure design shall not only comply with this code, but
also those in the current relevant ones of the nation.
3 Classification and Combination of Loads
3.1 Classification of Loads and Representative Values of Loads
3.1.1 The loads of the building structures may be classified into:
1 Permanent load, including structure self-weight, soil pressure, prestress, etc..
2 Variable load, including live load on floor, live load on roof and ash load, crane load, wind
3 Accidental load, including explosive force, impact force, etc..
3.1.2 In the design of building structures, the different loads shall adopt different representative
values according to the following requirements:
1 For permanent load, the characteristic value shall be its representative value;
2 For variable load, the characteristic value, combination value, frequent value or quasi-
permanent value shall be its representative value according to the design requirements;
3 For accidental load, its representative value shall be determined according to the use
characteristics of the building structures.
3.1.3 The determination of the representative value of variable load shall adopt 50-yeardesign
3.1.4 The characteristic values of loads shall be adopted according to the requirements of each
chapter of this code.
3.1.5 In the design of limit state of bearing capacity or the design of limit state of normal use
according to the characteristic combination, for variable load, the combination value or characteristic
value shall be its representative value according to the specified load combination. The combination
value of variable load shall be the characteristic value of variable load multiplied by the load combination
value coefficient.
3.1.6 In the design of limit state of normal use according to frequent combination, for variable load,
the frequent value or quasi-permanent value shall be its representative value; in the design according
value. The frequent value of variable load shall be the characteristic value of variable load multiplied
by the frequent value coefficient. The quasi-permanent value of variable load shall be the characteristic
value of variable load multiplied by the quasi-permanent value coefficient.
3.2 Combination of Loads
3.2.1 In the design of the building structures, load combination shall be carried out according to the
limit state of bearing capacity and the limit state of normal use respectively based on the loads possibly
emerging simultaneously on the structure during the use process, and the respective most unfavorable
combination shall be taken for design.
3.2.2 For the limit state of bearing capacity, the effect design value of load combination shall be
7.1 Characteristic Value of Snow Load and Reference Snow Pressure
7.1.1 The characteristic value of snow load on roofs in horizontal projection plane shall be
calculated according to the following formula:
Sk=μrs0 (7.1.1)
Where Sk——The characteristic value of snow load (kN/m2);
μr——The distribution factor for roof snow load;
s0——The reference snow pressure (kN/m2).
7.1.2 The reference snow pressure shall adopt the snow pressure with 50-year recurrence
interval, which is determined according to the method specified in this code; for the structure
7.1.3 The reference snow pressure of all the cities throughout the country shall be adopted according
to the value with a recurrence interval R of 50 years in Table E.5 of Appendix E of this code. Where
the reference snow pressure of a city or construction site is not given in Table E.5 of this code, the
reference snow pressure shall be determined through statistical analysis according to the method
specified in Appendix E of this code, in accordance with the local annual maximum snow pressure or
snow depth data, and on the basis of the definition of reference snow pressure; and the analysis shall
consider the influence of sample size. In the absence of local snow pressure and snow depth data, the
reference snow pressure may be determined through comparative analysis on meteorological and
topographic conditions according to the reference snow pressure or long-term data specified for
Reference Snow Pressure throughout the Country in Appendix E of this code.
7.1.4 The snow load in mountain area shall be determined through actual investigation. In the
absence of measured data, the snow load may be adopted according to the snow load value of local
adjacent open and flat ground surface multiplied by a coefficient of 1.2.
7.1.5 The combination value coefficient of snow load may take 0.7; the frequent value coefficient
may take 0.6; the quasi-permanent value coefficient shall take 0.5, 0.2 and 0 respectively according to
Zones I, II and III of snow load; the snow load zones shall be adopted in accordance with those
specified in Appendix E.5 or Annexed Figure E.6.2 of this code.
7.2 Distribution Factor for Roof Snow Load
in Table 7.2.1 according to the roof type of different categories.
7.2.2 In the design of building structures and supporting members of roofs, the snow distribution
condition shall be adopted according to the following requirements:
1 The roof slab and purlin shall be adopted according to the most unfavorable condition of
nonuniform snow distribution;
8 Wind Load
8.1 Characteristic Value of Wind Load and Reference Wind Pressure
8.1.1 The characteristic value of wind load vertical to the building surface shall be determined
according to the following requirements:
load shall be calculated according to the following formula:
wk=βzμsμzw0 (8.1.1-1)
Where wk——The characteristic value of wind load (kN/m2);
βz——The dynamic response factor at z height;
μs——The shape factor of wind load;
μz——The exposure factor for wind pressure;
w0——The reference wind pressure (kN/m2).
2 In the calculation of enclosure structures, the characteristic value of wind load shall be
calculated according to the following formula:
Where βgz——The gust factor at z height;
μsl——The local shape factor of wind load.
8.1.2 The reference wind pressure shall adopt the wind pressure with 50-year recurrence
interval, which is determined according to the method specified in this code, but shall not be less
than 0.3kN/m2. For the tall buildings, high-rise structures and other structures sensitive to wind
load, the reference wind pressure value shall be increased properly, shall meet the requirements
of the relevant code for the design of structures.
8.1.3 The reference wind pressure of all the cities throughout the country shall be adopted according
to the value with a recurrence interval R of 50 years in Table E.5 of Appendix E of this code. Where
reference wind pressure shall be determined through statistical analysis according to the method
specified in Appendix E of this code and in accordance with the definition of reference wind pressure
and the local annual maximum wind speed data; and the analysis shall consider the influence of
sample size. In the absence of local wind speed data, the reference wind pressure may be determined
through comparative analysis on meteorological and topographic conditions according to the reference
wind pressure or long-term data specified for nearby areas, or determined approximately according to
Annexed Figure E.6.3 Distribution Map of Reference Wind Pressure throughout the Country in
Appendix E of this code.
8.1.4 The combination value coefficient, frequent value coefficient and quasi-permanent value
3 Other conditions shall be valued according to μsl of open buildings.
Note: 1 The opening ratio of dominant opening refers to the ratio of the area of single dominant opening to the whole area of this
wall;
2 μsl shall take the value of corresponding dominant opening position.
8.3.6 For the wind tunnel test of building structures, the test equipment, test methods and data
processing shall meet the requirements of the relevant codes.
8.4 Along-wind Vibration and Dynamic Response Factor
8.4.1 For the buildings with height greater than 30m and height-width ratio greater than 1.5 and
various high-rise structures with fundamental natural period T1 greater than 0.25s, the along-wind
|