标准搜索结果: 'GB 50017-2017英文版'
标准号码 | 内文 | 价格(元) | 第2步 | 交付天数[PDF] | 标准名称 | 相关标准 |
GB 50017-2017 |
英文版
| 1330 |
购买全文
|
现货, 9秒内下载
|
钢结构设计标准
|
GB 50017-2017
|
标准编号: GB 50017-2017 (GB50017-2017) 中文名称: 钢结构设计标准 英文名称: Code for Design of Steel Structure 行业: 国家标准 中标分类: P26 字数估计: 293,254 发布日期: 2017-12-12 实施日期: 2018-07-01 旧标准 (被替代): GB 50017-2003 标准依据: 住房和城乡建设部公告2017年第1771号
GB 50017-2017: 钢结构设计标准
GB 50017-2017 英文名称: Code for Design of Steel Structure
中华人民共和国国家标准
GB 50017-2017
钢结构设计标准
中华人民共和国住房和城乡建设部
中华人民共和国国家质量监督检验检疫总局 联合发布
1 总 则
1.0.1 为在钢结构设计中贯彻执行国家的技术经济政策,做到 技术先进、安全适用、经济合理、
保证质量,制定本标准。
1.0.2 本标准适用于工业与民用建筑和一般构筑物的钢结构设计。
1.0.3 钢结构设计除应符合本标准外,尚应符合国家现行有关 标准的规定。
3 基本设计规定
3.1 一 般 规 定
3.1.1 钢结构设计应包括下列内容:
1 结构方案设计,包括结构选型、构件布置;
2 材料选用及截面选择;
3 作用及作用效应分析;
4 结构的极限状态验算;
5 结构、构件及连接的构造;
6 制作、运输、安装、防腐和防火等要求;
7 满足特殊要求结构的专门性能设计。
3.1.2 本标准除疲劳计算和抗震设计外,应采用以概率理论为 基础的极限状态设计方法,用分项
系数设计表达式进行计算。
3.1.3 除疲劳设计应采用容许应力法外,钢结构应按承载能力 极限状态和正常使用极限状态进
行设计:
1 承载能力极限状态应包括:构件或连接的强度破坏、脆性断裂,因过度变形而不适用于继续承载,
结构或构件丧失稳 定,结构转变为机动体系和结构倾覆;
2 正常使用极限状态应包括:影响结构、构件、非结构构 件正常使用或外观的变形,影响正常
使用的振动,影响正常使用 或耐久性能的局部损坏。
3.1.4 钢结构的安全等级和设计使用年限应符合现行国家标准 《建筑结构可靠度设计统一标准》
GB 50068和《工程结构可靠性 设计统一标准》 GB 50153 的规定。 一般工业与民用建筑钢结构
的安全等级应取为二级,其他特殊建筑钢结构的安全等级应根据 具体情况另行确定。建筑物中各
类结构构件的安全等级,宜与整 个结构的安全等级相同。对其中部分结构构件的安全等级可进行
调整,但不得低于三级。
3.1.5 按承载能力极限状态设计钢结构时,应考虑荷载效应的 基本组合,必要时尚应考虑荷载
效应的偶然组合。按正常使用极 限状态设计钢结构时,应考虑荷载效应的标准组合。
3.1.6 计算结构或构件的强度、稳定性以及连接的强度时,应 采用荷载设计值;计算疲劳时,
应采用荷载标准值。
3.1.7 对于直接承受动力荷载的结构:计算强度和稳定性时, 动力荷载设计值应乘以动力系数;
计算疲劳和变形时,动力荷载 标准值不乘动力系数。计算吊车梁或吊车桁架及其制动结构的疲
劳和挠度时,起重机荷载应按作用在跨间内荷载效应最大的一台 起重机确定。
3.1.8 预应力钢结构的设计应包括预应力施工阶段和使用阶段 的各种工况。预应力索膜结构设
计应包括找形分析、荷载分析及 裁剪分析三个相互制约的过程,并宜进行施工过程分析。
3.1.9 结构构件、连接及节点应采用下列承载能力极限状态设 计表达式:
3.1.10 对安全等级为一级或可能遭受爆炸、冲击等偶然作用的 结构,宜进行防连续倒塌控制
设计,保证部分梁或柱失效时结构 有一条竖向荷载重分布的途径,保证部分梁或楼板失效时结构的
稳定性,保证部分构件失效后节点仍可有效传递荷载。
3.1.11 钢结构设计时,应合理选择材料、结构方案和构造措 施,满足结构构件在运输、安装和
使用过程中的强度、稳定性和 刚度要求并应符合防火、防腐蚀要求。宜采用通用和标准化构 件,
当考虑结构部分构件替换可能性时应提出相应的要求。钢结 构的构造应便于制作、运输、安装、
维护并使结构受力简单明 确,减少应力集中,避免材料三向受拉。
3.1.12 钢结构设计文件应注明所采用的规范或标准、建筑结构 设计使用年限、抗震设防烈度、
钢材牌号、连接材料的型号(或 钢号)和设计所需的附加保证项目。
3.1.13 钢结构设计文件应注明螺栓防松构造要求、端面刨平顶 紧部位、钢结构最低防腐蚀设计
年限和防护要求及措施、对施工 的要求。对焊接连接,应注明焊缝质量等级及承受动荷载的特殊
构造要求;对高强度螺栓连接,应注明预拉力、摩擦面处理和抗 滑移系数;对抗震设防的钢结构,
应注明焊缝及钢材的特殊要求。
3.1.14 抗震设防的钢结构构件和节点可按现行国家标准《建筑 抗震设计规范》 GB 50011或
《构筑物抗震设计规范》 GB 50191 的规定设计,也可按本标准第17章的规定进行抗震性能化设计。
3.2 结 构 体 系
3.2.1 钢结构体系的选用应符合下列原则:
1 在满足建筑及工艺需求前提下,应综合考虑结构合理性、 环境条件、节约投资和资源、材料供
应、制作安装便利性等 因素;
2 常用建筑结构体系的设计宜符合本标准附录 A 的规定。
3.2.2 钢结构的布置应符合下列规定:
1 应具备竖向和水平荷载传递途径;
2 应具有刚度和承载力、结构整体稳定性和构件稳定性;
3 应具有冗余度,避免因部分结构或构件破坏导致整个结
构体系丧失承载能力;
4 隔墙、外围护等宜采用轻质材料。
3.2.3 施工过程对主体结构的受力和变形有较大影响时,应进 行施工阶段验算。
3.3 作 用
3.3.1 钢结构设计时,荷载的标准值、荷载分项系数、荷载组 合值系数、动力荷载的动力系数
等应按现行国家标准《建筑结构 荷载规范》 GB 50009 的规定采用;地震作用应根据现行国家标
准《建筑抗震设计规范》 GB 50011确定。对支承轻屋面的构件 或结构,当仅有一个可变荷载且
受荷水平投影面积超过60m² 时 , 屋面均布活荷载标准值可取为0.3kN/m²。 门式刚架轻型房屋
的 风荷载和雪荷载应符合现行国家标准《门式刚架轻型房屋钢结构 技术规范》 GB 51022 的规定。
3.3.2 计算重级工作制吊车梁或吊车桁架及其制动结构的强度、 稳定性以及连接的强度时,应
考虑由起重机摆动引起的横向水平 力,此水平力不宜与荷载规范规定的横向水平荷载同时考虑。
3.3.3 屋盖结构考虑悬挂起重机和电动葫芦的荷载时,在同一 跨间每条运动线路上的台数:对梁
式起重机不宜多于2台,对电 动葫芦不宜多于1台。
3.3.4 计算冶炼车间或其他类似车间的工作平台结构时,由检 修材料所产生的荷载对主梁可乘
以0.85,柱及基础可乘以0.75。
3.3.5 在结构的设计过程中,当考虑温度变化的影响时,温度 的变化范围可根据地点、环境、
结构类型及使用功能等实际情况 确定。当单层房屋和露天结构的温度区段长度不超过表3.3.5的
数值时, 一般情况下可不考虑温度应力和温度变形的影响。单层 房屋和露天结构伸缩缝设置宜符
合下列规定:
1 围护结构可根据具体情况参照有关规范单独设置伸缩缝;
梁或吊车桁架以下的柱间支撑,宜对称布置于温度区段中部,当 不对称布置时,上述柱间支撑的
中点(两道柱间支撑时为两柱间 支撑的中点)至温度区段端部的距离不宜大于表3.3.5纵向温度 区段
长度的60%;
3 当横向为多跨高低屋面时,表3.3.5中横向温度区段长 度值可适当增加;
4 当有充分依据或可靠措施时,表3.3.5 中数字可予以 增减。
3.4 结构或构件变形及舒适度的规定
3.4.1 结构或构件变形的容许值宜符合本标准附录B 的规定。 当有实践经验或有特殊要求时,
可根据不影响正常使用和观感的 原则对本标准附录B 中的构件变形容许值进行调整。
3.4.2 计算结构或构件的变形时,可不考虑螺栓或铆钉孔引起 的截面削弱。
值所产生的挠度值。当仅为改善 外观条件时,构件挠度应取在恒荷载和活荷载标准值作用下的挠
度计算值减去起拱值。
3.4.4 竖向和水平荷载引起的构件和结构的振动,应满足正常 使用或舒适度要求。
3.4.5 高层民用建筑钢结构舒适度验算应符合现行行业标准 《高层民用建筑钢结构技术规程》
JGJ 99 的规定。
3.5 截面板件宽厚比等级
3.5.1 进行受弯和压弯构件计算时,截面板件宽厚比等级及限 值应符合表3.5.1的规定,其中参
数 αo应按下式计算:
GB 50017-2017
GB
NATIONAL STANDARD OF THE
PEOPLE’S REPUBLIC OF CHINA
UDC
P GB 50017-2017
Standard for design of steel structures
ISSUED ON. DECEMBER 12, 2017
IMPLEMENTED ON. JULY 01, 2018
Issued by. Ministry of Housing and Urban-Rural Development of PRC;
General Administration of Quality Supervision Inspection and
Quarantine of PRC.
Table of Contents
Foreword ... 8
1 General provisions ... 13
2 Terms and symbols ... 14
2.1 Terms ... 14
2.2 Symbols ... 18
3 General requirements ... 24
3.1 General requirements... 24
3.2 Structural systems ... 27
3.3 Actions ... 28
3.4 Requirements of deformation for structures and members ... 30
3.5 Classification of sections ... 30
4 Material ... 33
4.1 Structural steel designations and standards ... 33
4.2 Connections and fasteners materials and standards ... 33
4.3 Selection of materials ... 35
4.4 Design strength and parameters ... 37
5 Structural analysis and stability design ... 47
5.1 General requirements... 47
5.2 Initial imperfections... 49
5.3 First-order elastic analysis and design ... 52
5.4 Second-order P-Δ elastic analysis and design ... 52
5.5 Direct analysis method of design ... 53
6 Flexural members ... 57
6.1 Shear and flexural strength ... 57
6.2 Flexural-torsional stability of beams ... 60
6.3 Plate stability ... 63
6.4 Design of beams considering post-buckling strength of webs ... 71
6.5 Strengthening of openings ... 75
6.6 Detailing ... 76
7 Axially loaded members ... 78
7.1 Strength calculation of cross-sections ... 78
7.2 Stability calculation of members under axial compression ... 79
7.3 Local stability and post-buckling strength of solid-web members under axial
compression ... 93
7.4 Effective length and allowable slenderness ratio of members under axial
compression ... 97
7.5 Bracing of members under axial compression ... 103
7.6 Special cases of trusses and tower members ... 105
8 Members under combined axial force and bending ... 108
8.1 Strength calculations of cross-sections ... 108
8.2 Stability calculation of members ... 111
8.3 Effective length of frame columns ... 118
8.4 Local stability and post-buckling strength of beam-columns ... 125
8.5 Truss members subjected to second-order moments ... 128
9 Stiffened steel shear walls ... 130
9.1 General requirements... 130
9.2 Design of stiffened steel shear walls ... 130
9.3 Detailing ... 133
10 Plastic design and provisions for design using moment redistribution ... 135
10.1 General requirements... 135
10.2 Provisions for design using moment redistribution ... 136
10.3 Calculation of member strength and stability ... 137
10.4 Slenderness limitations and detailing ... 138
11 Connections ... 141
11.1 General requirements ... 141
11.2 Calculation of welded connections ... 143
11.3 Detailing requirements of welded connections ... 148
11.5 Detailing requirements of fasteners ... 158
11.6 Pin connections ... 161
11.7 Details of flanged connections for steel tubes ... 164
12 Joints ... 165
12.1 General requirements... 165
12.2 Connecting plate joints ... 165
12.3 Beam-column joints ... 170
12.4 Cast steel joints ... 175
12.5 Pre-stressed cable joints ... 176
12.7 Column footing ... 179
13 Steel tubular joints ... 186
13.1 General requirements... 186
13.2 Detail requirements ... 187
13.3 Design of unstiffened and stiffened CHS joints ... 192
13.4 Design of unstiffened and stiffened RHS joints ... 212
14 Composite steel and concrete beams ... 224
14.1 General requirements... 224
14.2 Design of composite beams ... 227
14.4 Calculation of deflection ... 234
14.5 Calculation of concrete crack width at hogging moment region ... 236
14.6 Calculation of longitudinal shear ... 237
14.7 Detailing provisions ... 239
15 Concrete-filled steel tubular columns and joints ... 242
15.1 General requirements... 242
15.2 Rectangular concrete-filled steel tubular members ... 242
15.3 Round concrete-filled steel tubular members ... 243
15.4 Beam-column joints ... 243
16.1 General requirements... 245
16.2 Design for fatigue ... 245
16.3 Detailing requirements ... 252
16.4 Prevention of brittle fracture ... 256
17 Seismic design of steel structural members ... 258
17.1 General requirements... 258
17.2 Design requirements ... 262
17.3 Connections and details ... 277
18 Protection of steel structures ... 286
18.2 Corrosion prevention design ... 286
18.3 Temperature insulation ... 289
Appendix A Common structural systems ... 290
Appendix B Limits of deflection for structures and flexural members ... 293
Appendix C Overall stability of beams ... 298
Appendix D Stability coefficients of members under axial compression ... 304
Appendix E Effective length factors of columns ... 309
Appendix F Elastic buckling stresses for stiffened steel shear walls ... 318
Appendix G Buckling calculation of truss connecting plate under diagonal
Appendix H Classifications of unstiffened tubular joints in terms of rigidity 329
Appendix J Fatigue design of composite steel and concrete beams ... 332
Appendix K Design values for compressive and shear strength of composite
round concrete-filled steel tubes ... 334
Explanation of wording in this standard ... 343
List of quoted standards ... 344
Standard for design of steel structures
1 General provisions
1.0.1 To implement the national technical and economic policies in the design
economic rationality, and quality assurance, this standard is hereby formulated.
1.0.2 This standard applies to the design of steel structures for industrial & civil
buildings as well as general structures.
1.0.3 In addition to complying with this standard, the design of steel structure
shall also comply with the provisions of relevant national standards.
2 Terms and symbols
2.1 Terms
2.1.1 Brittle fracture
The sudden fracture of structure or member which does not exhibit a plastic
2.1.2 First-order elastic analysis
The establishment of balancing conditions in accordance with the undeformed
structure as well as the analysis of structure’s internal force and displacement
by elastic phases, which does not consider the impacts of the geometric
nonlinearity on the structure’s internal force and deformation.
2.1.3 Second-order P-Δ elastic analysis
The establishment of balancing conditions in accordance with the displaced
structure as well as the analysis of structure’s internal force and displacement
by elastic phases, which only considers the impacts of the initial overall defect
and deformation.
2.1.4 direct analysis method of design
The design method of using the overall structural system as an object to
perform the second-order nonlinear analysis, which directly considers the
factors of initial geometric defects, residual stress, material nonlinearity, joint
stiffness and so on that have significant influence on structural stability and
strength performance.
2.1.5 Buckling
Another state of significant deformation of the structure, member or steel plate
2.1.6 Post-buckling strength of steel plate
The capability of steel plate to continuously withstand larger load after it is
buckled.
2.1.7 Normalized slenderness ratio
A parameter, of which the value is equal to the square root of the quotient of the
bending, shearing or compressive yield strength of the steel AND the
corresponding flexural, shear or compressive elastic buckling stress of the
member or steel plate.
2.1.8 Overall stability
2.1.9 Effective width
When calculating the post-buckling ultimate strength of the steel plate, the
resulting reduced width which is obtained by using the uniformly distributed
yield strength to equivalent the width of the steel plate which is subject to the
non-uniformly distributed ultimate stress.
2.1.10 Effective width factor
The ratio of the effective width to the actual width of the steel plate.
2.1.11 Effective length ratio
Coefficients associated with the buckling mode of the member and the
2.1.12 Effective length
The length used to calculate stability, the value of which is equal to the product
of the geometric length of the member between its effective constraint points
and the effective length ratio.
2.1.13 Slenderness ratio
The ratio of the effective length of the member to the turning radius of the
member section.
2.1.14 Equivalent slenderness ratio
In the overall stability calculation of the axially loaded members, in accordance
the calculation which converts the lattice members to solid-web members, or
the calculation which converts the bending torsional and torsional instability into
bending instability calculations.
2.1.15 Nodal bracing force
The lateral force which is used for bracing along the buckling direction of the
braced members (or the compressed flange of the member), at the lateral
support which is provided to reduce the free length of the compressed member
(or the compressed flange of the member).
2.1.16 Unbraced frame
|