标准搜索结果: 'GB/T 20042.1-2017英文版'
标准号码 | 内文 | 价格(元) | 第2步 | 交付天数[PDF] | 标准名称 | 相关标准 |
GB/T 20042.1-2017 |
英文版
| 530 |
购买全文
|
现货, 9秒内下载
|
质子交换膜燃料电池 第1部分:术语
|
GBT 20042.1-2017
|
标准编号: GB/T 20042.1-2017 (GB/T20042.1-2017) 中文名称: 质子交换膜燃料电池 第1部分:术语 英文名称: Proton exchange membrane fuel cell -- Part 1: Terminology 行业: 国家标准 (推荐) 中标分类: K82 国际标准分类: 27.070 字数估计: 33,389 发布日期: 2017-05-12 实施日期: 2017-12-01 旧标准 (被替代): GB/T 20042.1-2005 起草单位: 中国科学院大连化学物理研究所、武汉众宇动力系统科技有限公司、武汉理工大学、新源动力股份有限公司、机械工业北京电工技术经济研究所、上海神力科技有限公司、深圳市标准技术研究院、南京大学昆山创新研究院、航天新长征电动汽车技术有限公司、宁波拜特测控技术有限公司 归口单位: 全国燃料电池及液流标准化技术委员会(SAC/TC 342) 提出机构: 中国电器工业协会 发布机构: 中华人民共和国国家质量监督检验检疫总局、中国国家标准化管理委员会 范围: 本部分界定了质子交换膜燃料电池技术及其应用领域内使用的术语和定义。本部分适用于各种类型的质子交换膜燃料电池。
GB/T 20042.1-2017: 质子交换膜燃料电池 第1部分:术语
GB/T 20042.1-2017 英文名称: Proton exchange membrane fuel cell -- Part 1: Terminology
ICS 27.070
K82
中华人民共和国国家标准
代替GB/T 20042.1-2005
1 范围
本部分界定了质子交换膜燃料电池技术及其应用领域内使用的术语和定义。
本部分适用于各种类型的质子交换膜燃料电池。
3 物理量及参数
3.1 实物特性相关
3.1.1
Pt担载量 Ptloading
燃料电池(电极)单位活性面积上Pt的量。
注:要明确是单独阳极或单独阴极Pt担载量,或者阳极和阴极Pt担载量的总和。
3.1.2
催化剂担载量 catalystloading
燃料电池(电极)单位活性面积上催化剂的量。
注:要明确是单独阳极或单独阴极担载量,或者阳极和阴极担载量的总和。
3.1.3
催化剂面积比活性 catalystareaactivity
燃料电池在给定电压下电极中单位电化学表面积的电催化剂所输送的电流。
3.1.4
燃料电池在给定电压下电极上单位质量的电催化剂所输送的电流。
3.1.5
电极活性/有效面积 electrodeactive/effectivearea
垂直于电流流动方向的电极的几何面积。
3.1.6
电极中能够参与电化学反应的电催化剂表面的面积总和。
注:电化学表面积表示为 m2。
3.1.7
极板的流场部分的平面投影面积与极板总平面投影面积的比值。
注:流场部分面积指可与膜电极活性区域相对应的面积。
3.1.8
质子交换膜中平均到每个传导质子的基团所带有的水分子数。
3.1.9
每摩尔离子基团所对应的干膜的质量,单位为g/mol。
了膜的酸浓度。
3.1.10
在给定温度和湿度下相对于干膜在横向、纵向和厚度方向的尺寸变化比例,用%表示。
3.1.11
质子传导率 protonconductivity
膜的质子传导能力,表征为膜在单位电场强度下所能传导的电流密度,单位是S/cm。
3.1.12
透气率 gaspermeability
在单位压力下单位时间内透过单位面积和单位厚度物体的气体量。
3.1.13
孔隙率 porosity
一个物件中所有孔的体积和该物件几何体积的比值。
注:在质子交换膜燃料电池中,孔隙率是催化层、微孔扩散层、气体扩散层的表征参数之一。
3.1.14
由电子和离子电阻造成的燃料电池内部的欧姆电阻。
注:欧姆意指电压降和电流的关系服从欧姆定律。
3.1.15
低可燃极限 lowerflammablelimit
可燃气体或蒸汽在与助燃气体形成的均匀混合系中能够被点燃并能转播火焰时的最低浓度(体积
分数)。
3.1.16
再循环率 recirculationratio
再循环反应物所占输入反应物的量的比例,也称回流比。
3.2 反应相关
3.2.1
额定电压 ratedvoltage
制造商规定的电堆或燃料电池系统在运行时的连续输出电压,燃料电池电堆或系统设计在该电压
下运行。
3.2.2
开路电压 opencircuitvoltage;OCV
燃料电池中有燃料和氧化剂但没有外部电流流动时的端电压。
3.2.3
空载电压 no-loadvoltage
燃料电池系统不向外部负载提供任何电能时其所用电堆的输出电压。如果燃料电池系统通过使用
其电堆来为寄生负载提供电能,电堆此时的空载电压要低于电堆的开路电压。
3.2.4
最低输出电压 minimumoutputvoltage
由生产厂商规定的燃料电池系统或模块所能允许输出的最低电压。
3.2.5
界面电压 interfacialpotential
电极与其相接触的电解质之间的电势差。
3.2.6
热力学电压 thermodynamicvoltage
压;其中F 是法拉第常数,等于96485库伦。
3.2.7
由于活化极化而引起电极电位偏离其热力学电极电位的值。
3.2.8
欧姆极化过电位 ohmicoverpotential
由于欧姆极化而引起的电极电位偏离其热力学电极电位的值。
3.2.9
由于传质(浓差)极化而引起电极电位偏离其热力学电极电位的值。
3.2.10
(如:水或醇等)的平均数。
3.2.11
内电流 internalcurrent
电子穿过电解质移动到另一侧所形成电流,或燃料分子穿过电解质移动到另一侧所对应的法拉第
电流。
3.2.12
极限电流 limitingcurrent
反应物到达催化剂表面瞬间便全部反应致使其在催化剂表面的浓度为零时的电流,表现为燃料电
池输出电压为零。
额定/满载电流 rated/ful-loadcurrent
制造商规定燃料电池电堆或系统的最大连续输出电流,燃料电池电堆或系统设计在该电流下运行。
3.2.14
电流密度 currentdensity
单位电极活性面积上通过的电流。
3.2.15
当一个电极反应处于热力学平衡状态不产生任何净电流时,其正反应和其逆反应的速率相等,该反
应速率所对应的电极中催化剂的单位活性表面积上的电流为交换电流密度。
注:是表示催化剂活性的一个参数,交换电流密度越大,催化剂的催化性能越好,活化过电位越低。
单位时间内单位膜电极活性面积的透氢量所对应的法拉第电流。
3.2.17
额定功率 ratedpower
在生产商规定的正常运行条件下,燃料电池发电系统的最大连续电输出功率。
3.2.18
毛功率 grosspower
燃料电池堆输出的直流电功率。
3.2.19
净功率 netpower
3.2.20
最低功率 minimumpower
燃料电池发电系统在连续稳定运行的情况下能够输出的最小净电功率。
3.2.21
峰值功率 peakpower
燃料电池电堆或发电系统在一个约定的短时间内产生的不低于额定功率的最大功率。
3.2.22
燃料电池系统所消耗的来自外部的电功率。
3.2.23
3.2.24
单位电极活性面积产生的功率。
3.2.25
体积比功率 volumetricpower
电堆或燃料电池发电系统额定功率和其体积的比值。
注:体积比功率通常称为功率密度(PowerDensity)。
3.2.26
质量比功率 specificpower
电堆或燃料电池发电系统额定功率和其质量的比值。
电压效率 voltageefficiency
单电池或电堆输出的直流电压与在该运行条件下其理论电压(即热力学平衡电压)的百分比。
3.2.28
电效率 electricalefficiency
燃料电池堆或发电系统产生的净电功率和向燃料电池堆或发电系统提供的总焓流的百分比。
3.2.29
一个反应的吉布斯自由能和其热焓的百分比。
注:当反应产物或产物之一为水时,一般采用水在蒸汽状态时的吉布斯自由能和其热焓进行计算。这时的热焓值
叫做低热焓值。水为液态时的热焓值叫做高热焓值。
在燃料重整系统中燃料生成目标产物的转化率。
3.2.31
燃料电池系统输出的可用能量流和供给燃料电池系统的总能量流的百分比。
3.2.32
总的可用能量流(净电能和回收的热流)和供给燃料电池发电系统总焓流的百分比。
注:原燃料供给的总焓流(包括反应焓)应采用低热值,以便更好的和其他类型的能量转换系统比较。
3.2.33
燃料电池发电系统回收的热能与供入燃料电池发电系统焓流的百分比。
注:原燃料供给的总焓流(包括反应焓)应采用低热值,以便更好的和其他类型的能量转换系统比较。
废热 wastedheat
从燃料电池系统中排放出且不被回收的热能。
3.2.35
回收热 recoveredheat
从燃料电池系统中回收再利用的热能。
3.2.36
寄生负载 parasiticload
为了维持燃料电池发电系统运行,辅助系统(BOP)所消耗的功率。
注:例如风机、泵、加热器、传感器的能耗。
燃料电池系统所消耗的来自外部的能量,包括电能、热能、机械能等。
3.2.38
衰减速率 decayrate
在一定时间内燃料电池性能衰减的比率。
注:常用的测量单位是单位时间内电压的下降值(μV/h),或一固定时间内终值电压和初值电压的百分比。
GB/T 20042.1-2017
GB
NATIONAL STANDARD OF THE
PEOPLE’S REPUBLIC OF CHINA
ICS 27.070
K 82
Replacing GB/T 20042.1-2005
Proton exchange membrane fuel cell –
Part 1. Terminology
ISSUED ON. MAY 12, 2017
IMPLEMENTED ON. DECEMBER 01, 2017
Issued by. General Administration of Quality Supervision, Inspection and
Quarantine;
Standardization Administration of the People's Republic of
China.
Table of Contents
Foreword . 3
1 Scope .. 5
2 Physical and abstract . 5
3 Physical quantities and parameters . 17
4 Reaction process and phenomena, nature . 29
5 Experiment methods and status . 34
Indexing .. 41
Foreword
GB/T 20042 “Proton exchange membrane fuel cell” is divided into the following
7 parts.
- Part 1. Terminology;
- Part 2. General technical specification of fuel cell stacks;
- Part 3. Test method for proton exchange membrane;
- Part 4. Test method of electrocatalyst;
- Part 5. Test method of membrane electrode;
- Part 6. Test method of bipolar plate properties;
- Part 7. Test method of carbon paper properties.
This part is part 1 of GB/T 20042.
This part was drafted in accordance with the rules given in GB/T 1.1-2009.
This part replaces GB/T 20042.1-2005 “Proton exchange membrane fuel cell -
Terminology”. As compared with GB/T 20042.1-2005, the main technical
changes are as follows.
- ADJUST the classification of terminology, from the original seven categories
to five major categories and eleven subcategories;
- INCREASE the terms and definitions from the original 93 to 219.
This part was proposed by the China Electrical Appliance Industry Association.
This part shall be under the jurisdiction of the National Fuel Cell and Liquid Flow
Standardization Technical Committee (SAC/TC 342).
Responsible drafting organizations of this part. Chinese Academy of Sciences
Dalian Institute of Chemical Physics, Wuhan Zhongyu Power System
Technology Co., Ltd., Wuhan University of Technology, Xinyuan Power Co., Ltd.,
Machinery Industry Beijing Electrotechnical Economic Research Institute,
Shanghai Shenli Technology Co., Ltd., Shenzhen Municipal Standard
Technology Research Institute, Nanjing University Kunshan Innovation
Research Institute, Aerospace New Long March Electric Vehicle Technology
Co., Ltd., Ningbo Beit Measurement & Control Technology Co., Ltd.
The main drafters of this part. Liang Dong, Qi Zhigang, Hou Ming, Li Shang,
Chen Chen, Zhang Ruogu, Yi Baolian, Pan Mu, Du Chao, Huang Manxue, Liu
Proton exchange membrane fuel cell –
Part 1. Terminology
1 Scope
This part defines the terms and definitions used for proton exchange membrane
fuel cell technology and its application field.
This part applies to various types of proton exchange membrane fuel cells.
2 Physical and abstract
2.1 Materials
2.1.1
Hydrogen storage material
Materials that can absorb, store, and release hydrogen when needed under
certain conditions.
2.1.2
Electrocatalyst
A substance that speeds up the electrode reaction process but is not
consumed by itself.
Non-precious metal catalyst
Catalyst that does not contain any precious metal component.
Note. Precious metal elements include. Osmium (Os), Iridium (Ir),
Ruthenium (Ru), Rhodium (Rh), Platinum (Pt), Palladium (Pd), Gold (Au),
Silver (Ag).
2.1.4
Alloy catalyst
A catalyst consisting of an alloy of two or more metals.
A proton exchange membrane in which all hydrogen atoms in the polymer
2.1.13
Composite membrane
A membrane which consists of two or more materials.
2.1.14
Carbon cloth
A porous cloth woven from carbon fiber.
2.1.15
Carbon paper
A porous paper-like profile formed by bonding uniformly dispersed carbon
2.1.16
Fuel
The substance which can be oxidized at the anode to produce free electrons.
2.1.17
Raw fuel
The unreformed fuel which is supplied from an external source to the fuel
cell power generation system.
2.1.18
Reformate
reforming system.
2.1.19
Oxidant
The substance which can get electrons at cathode to be reduced.
2.1.20
2.2.18
Stack wiring lead
The output terminal of the fuel cell stack that supplies power to the outside,
which is also referred to as the cell stack terminal.
Manifold
A pipe that supplies fluids to the fuel cell or fuel cell stack or otherwise
collects from the fuel cell or fuel cell stack and drain it.
Note 1. The design of the external manifold is for single cells that are stacked
together. The gas mixture is sent from a central source to the inlet of large
fuel and oxidant. The inlet covers the immediate end of the stack and is
sealed with a properly designed gasket. Similar systems collect exhaust gas
at the opposite end.
Note 2. The internal manifold is an internal channel formed by the assembly
removal of reactants and/or reaction products for each cell. The stack of
some structures also includes internal manifolds that deliver and remove
coolant.
2.3 Battery/system
2.3.1
Single cell unit cell
The basic unit of a fuel cell which consists of a group of membrane electrode
assemblies and corresponding unipolar or bipolar plates.
Note. In general, a single cell in a stack is called unit cell, and a single cell
2.3.2
Fuel cell
An electrochemical device that directly converts the chemical energy of an
externally supplied fuel and oxidant into electrical energy (direct current) and
generates heat and reaction products.
2.3.3
Regenerative fuel cell
Fuel supply system/module
A system or module that provides fuel storage, supply, and regulation
2.4.7
Thermal management system/module
The system and module which is to provide cooling, heat dissipation and/or
heating, and may also provide for excess heat reusing to ensure that the
temperature of various internal modules is within normal range when the fuel
cell system is in operation.
2.4.8
Water management system/module
A system or module that manages to maintain the water required for the
requirements and may also be used to achieve the reuse of water.
2.4.9
Water treatment system/module
A system or module used to perform the necessary treatment of recycled or
make-up water used in fuel cell systems.
2.4.10
Exhaust treatment system/module
The system or module for treating the exhaust gas discharged from the stack
to achieve the relevant discharge standard, which is mainly to remove or
2.4.11
Oxidant treatment system/module
The system or module that meters, regulates, and processes the input
oxidant to facilitate the use by the fuel cell power system.
2.4.12
Balance of plant; BOP
The general term for all components of a fuel cell system other than the fuel
(Membrane) swelling rate
The ratio of dimensional change in the transverse, longitudinal and thickness
humidity, expressed in %.
3.1.11
Proton conductivity
The proton conductivity of the membrane which is characterized by the
current density that the membrane can conduct at a unit electric field
strength, in units of S/cm.
3.1.12
Gas permeability
The amount of gas which passes through unit area and unit thickness of
3.1.13
Porosity
The ratio of the volume of all holes in an article to the geometric volume of
the article.
Note. In proton exchange membrane fuel cells, porosity is one of the
characteristic parameters of the catalyst layer, microporous diffusion layer,
and gas diffusion layer.
3.1.14
Internal resistance (fuel cell internal resistance)
resistance.
Note. Ohmic means that the relationship between voltage drop and current
obeys Ohm's law.
3.1.15
Lower flammable limit
The lowest concentration (volume fraction) of a combustible gas or steam
that can be ignited in a homogeneous mixture with the combustion
supporting gas and can transmit the flame.
The DC power output from the fuel cell stack.
|