标准搜索结果: 'GB/T 33827-2017英文版'
标准号码 | 内文 | 价格(元) | 第2步 | 交付天数[PDF] | 标准名称 | 相关标准 |
GB/T 33827-2017 |
英文版
| 300 |
购买全文
|
现货, 9秒内下载
|
锂电池用纳米负极材料中磁性物质含量的测定方法
|
GBT 33827-2017
|
标准编号: GB/T 33827-2017 (GB/T33827-2017) 中文名称: 锂电池用纳米负极材料中磁性物质含量的测定方法 英文名称: Determination of magnetic impurities in anode nanomaterials for Li-ion battery 行业: 国家标准 (推荐) 中标分类: G12 国际标准分类: 71.060.50 字数估计: 12,183 发布日期: 2017-05-31 实施日期: 2017-12-01 引用标准: GB/T 4842; GB/T 6682-2008 起草单位: 深圳市贝特瑞新能源材料股份有限公司、合肥国轩高科动力能源有限公司、河南科隆新能源股份有限公司、冶金工业信息标准研究院、深圳市贝特瑞纳米科技有限公司、天津市贝特瑞新能源科技有限公司 归口单位: 全国纳米技术标准化技术委员会纳米材料分技术委员会(SAC/TC 279/SC 1) 提出机构: 中国科学院 发布机构: 中华人民共和国国家质量监督检验检疫总局、中国国家标准化管理委员会 范围: 本标准规定了电感耦合等离子体发射光谱法(ICP-OES)测定锂离子电池用纳米负极材料中磁性物质含量的原理、测定环境条件、试剂和仪器、测试步骤、结果分析与计算,以及测试报告内容等。本标准适用于含量(质量分数)在0.02×10^-6~20×10^-6之间的磁性物质含量(铁、钻、铬、镍、锌含量总和)的测定。
GB/T 33827-2017: 锂电池用纳米负极材料中磁性物质含量的测定方法
GB/T 33827-2017 英文名称: Determination of magnetic impurities in anode nanomaterials for Li-ion battery
ICS 71.060.50
G12
中华人民共和国国家标准
锂电池用纳米负极材料中磁性物质
含量的测定方法
中华人民共和国国家质量监督检验检疫总局
中国国家标准化管理委员会发布
前言
本标准按照GB/T 1.1-2009给出的规则起草。
本标准由中国科学院提出。
本标准由全国纳米技术标准化技术委员会纳米材料分技术委员会(SAC/TC279/SC1)归口。
本标准起草单位:深圳市贝特瑞新能源材料股份有限公司、合肥国轩高科动力能源有限公司、河南
科隆新能源股份有限公司、冶金工业信息标准研究院、深圳市贝特瑞纳米科技有限公司、天津市贝特瑞
新能源科技有限公司。
本标准主要起草人:岳敏、毛爱平、葛道斌、程迪、戴石锋、查秀芳、陈南敏、杨续来、徐云军、黄友元、
刘修明。
锂电池用纳米负极材料中磁性物质
含量的测定方法
1 范围
本标准规定了电感耦合等离子体发射光谱法(ICP-OES)测定锂离子电池用纳米负极材料中磁性物
质含量的原理、测定环境条件、试剂和仪器、测试步骤、结果分析与计算,以及测试报告内容等。
本标准适用于含量(质量分数)在0.02×10-6~20×10-6之间的磁性物质含量(铁、钴、铬、镍、锌含
量总和)的测定。
2 规范性引用文件
下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文
件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
GB/T 4842 氩
GB/T 6682-2008 分析实验室用水规格和试验方法
3 术语和定义
下列术语和定义适用于本文件。
4 测定原理
将样品分散在乙醇介质中,利用具有一定磁场强度的磁棒对样品滚动吸附一定时间,对所吸附上的
带磁性的颗粒在酸溶液中加热使之溶出,使用电感耦合等离子体发射光谱仪测定铁、钴、铬、镍、锌含量,
并计算含有5种元素物质含量的总和。
5 测定环境条件
测定在室温环境、湿度不超过60%RH的条件下进行。
6 试剂及材料
警告---本试验方法中使用的部分试剂具有毒性或腐蚀性,操作时须小心谨慎
6.1 一般要求
除另有特定说明,分析中使用分析纯试剂和GB/T 6682-2008中规定的三级水。
6.2 硝酸
质量分数不低于65%。
6.3 盐酸
质量分数不低于36%。
6.4 无水乙醇
质量分数不低于99.7%。
6.5 氩气
氩气应符合GB/T 4842的一般要求,体积分数不低于99.999%。
6.6 标准物质
6.6.1 铁标准溶液,标准号为GSB04-1726-2004,浓度为1000μg/mL。
6.6.2 钴标准溶液,标准号为GSB04-1722-2004,浓度为1000μg/mL。
6.6.3 铬标准溶液,标准号为GSB04-1723-2004,浓度为1000μg/mL。
6.6.4 镍标准溶液,标准号为GSB04-1740-2004,浓度为1000μg/mL。
6.6.5 锌标准溶液,标准号为GSB04-1761-2004,浓度为1000μg/mL。
6.7 标准溶液配制
6.7.1 各取5.00mL铁、钴、铬、镍、锌标准溶液(6.6)盛入100.00mL容量瓶中,加入2.00mL硝酸
(6.2),定容备用。此标准溶液中铁、钴、铬、镍、锌元素浓度均为50.00μg/mL。
6.7.2 分别量取标准溶液(6.7.1)0.00mL、0.20mL、0.50mL、1.00mL、2.00mL、5.00mL、10.00mL置
于7个100mL容量瓶中,各加入2.00mL硝酸(6.2),定容,配制成铁、钴、铬、镍、锌元素浓度为
0.00μg/mL、0.10μg/mL、0.25μg/mL、0.50μg/mL、1.00μg/mL、2.50μg/mL、5.00μg/mL的标样空
白及系列混合标准溶液。
7 测试仪器和设备
7.1 电感耦合等离子体发射光谱仪(ICP-OES)
测试波长应按表1的要求进行。
7.2 锥形瓶
250mL的透明无色玻璃锥形瓶。
7.3 样品罐
容积为500mL;带内外盖,密封性好,塑料材质,口径宜与锥形瓶口径一致。
7.4 磁棒
磁场强度:6000GS(允许偏差5%以内),选取直径:15mm~20mm,长度:45mm~55mm,外表:
聚四氟乙烯材料,耐强酸碱。
7.5 电子天平
精度为0.001g。
7.6 滚动装置
滚径:10cm~12cm,转动速度可设置范围:60r/min~100r/min。滚动机的滚动方式参见附
录A。
7.7 超声波清洗仪
超声频率:28kHz~33kHz。
8.1 清洁磁棒
将磁棒放入清洗干净的锥形瓶中,加入2.00mL硝酸,6.00mL盐酸,加水至浸没磁棒,置于加热装
置上加热,将溶液加热到微沸,并保持30min,加热过程中需摇晃不少于3次,加热完毕后,取下锥形
瓶,自然冷却至室温,然后用水将磁棒清洗3次,备用。
注:清洗时需要用另一磁棒在锥形瓶外底部吸住瓶内磁棒,以防溶液倒出时磁棒掉出。
8.2 称量样品
按表2要求,准确称取一定量的样品于清洗干净的样品罐中。
8.3 吸附磁性物质
向装有样品的样品罐,加入300mL无水乙醇,加入清洗干净的磁棒,盖紧罐盖,充分摇匀后,将样
3次。
8.4 清洗
滚动完毕后,取出磁棒装入锥形瓶中,取出过程参见附录B。用水清洗后,加入50mL无水乙醇,
在超声波清洗仪上超声1min,重复三次,然后再用水清洗磁棒及锥形瓶三次。清洗完成时需要用另一
磁棒在锥形瓶外底部吸住瓶内磁棒,以防溶液倒出时磁棒掉出。
8.5 消解磁性物质
清洗完毕后,向装有磁棒的锥形瓶中加入1.5mL硝酸,4.5mL盐酸,加水使磁棒完全浸没,置于加
热装置上加热,加热并保证微沸30min,加热过程中需摇晃不少于3次,摇晃过程中,尽量使酸液覆盖
磁棒的表面。加热完毕后,取下,自然冷却至室温。将冷却后的溶液移至100mL容量瓶中,用少量水
8.6 空白样品制备
随同样品进行空白试验。
8.7 测定
使用电感耦合等离子体发射光谱仪,仪器参数设定参见附录C,根据表1的规定选择元素波长,依
次测试系列混合标准溶液绘制工作曲线,然后再将样品空白及待测样品以同样的方法测定,采用扣除空
白进行结果校正。
10 重复性
10.1 此方法并没有合适的标准样品可供于确定偏差,因此,以重复测试的方式确定其重复性。
10.2 将同一个样品,分4个实验室测试,实验室内、实验室间的样品平均值、标准偏差见表3。
报告包括但不仅限于以下信息:
---报告编号;
---测试日期;
---测量者、审核者;
---测量环境温度、湿度;
---样品信息描述,包括厂家、名称、型号等;
---所使用仪器的类型,品牌,型号;
---测试结果;
---不确定度评估,应包含所有的不确定度来源,包括A类和B类,以及合成不确定度。
GB/T 33827-2017
GB
NATIONAL STANDARD OF THE
PEOPLE’S REPUBLIC OF CHINA
ICS 71.060.50
G 12
Determination of magnetic impurities in
anode nanomaterials for Li-ion battery
ISSUED ON. MAY 31, 2017
IMPLEMENTED ON. DECEMBER 1, 2017
Issued by. General Administration of Quality Supervision, Inspection
and Quarantine;
Standardization Administration Committee.
3. No action is required - Full-copy of this standard will be automatically &
immediately delivered to your EMAIL address in 0~60 minutes.
Table of Contents
Foreword ... 3
1 Scope ... 4
2 Normative references ... 4
3 Terms and definitions ... 4
4 Determination principle ... 5
5 Environmental conditions for determination ... 5
6 Reagents and materials ... 5
7 Testing instruments and equipment ... 6
8 Testing procedures ... 7
9 Result calculation and data processing ... 9
10 Repeatability ... 9
11 Test report ... 10
Annex A (Informative) Rolling device schematic ... 11
Annex B (Informative) Removal steps of magnetic bar and precautions ... 12
Annex C (Informative) Instrument parameter setting ... 14
Foreword
This Standard was drafted in accordance with the rules given in GB/T
1.1-2009.
This Standard was proposed by Chinese Academy of Sciences.
This Standard shall be under the jurisdiction of Subcommittee on
Nanomaterials, National Technical Committee on Nanotechnology of
Standardization Administration of China (SAC/TC 279 / SC 1).
The drafting organizations of this Standard. Shenzhen Beitui New Energy
Materials Co., Ltd., Hefei Guoxuan Hi-Tech Power Energy Co., Ltd., Henan
Cologne New Energy Co., Ltd., Metallurgical Industry Information Standards
Institute, Shenzhen BRT Nanotechnology Limited, Tianjin BRT New Energy
Technology Co., Ltd.
Main drafters of this Standard. Yue Min, Mao Aiping, Ge Daobin, Cheng Di,
Dai Shifeng, Zha Xiufang, Chen Nanmin, Yang Xulai, Xu Yunjun, Huang
Youyuan, Liu Xiuming.
Determination of magnetic impurities in
anode nanomaterials for Li-ion battery
1 Scope
This Standard specifies the principle, environmental conditions for
determination, reagents and instruments, test procedures, analysis and
calculation of results, and test report content in determination of magnetic
materials in anode nanomaterials for Li-ion battery in inductively coupled
plasma atomic emission spectrometry (ICP-OES).
This Standard applies the determination of magnetic materials (the sum of
iron, cobalt, chromium, nickel, zinc content) with mass fraction between
0.02×10-6 ~ 20×10-6.
2 Normative references
The following referenced documents are indispensable for the application of
this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including
any amendments) applies.
GB/T 4842, Argon
GB/T 6682-2008, Water for analytical laboratory use - Specification and
test methods
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
3.1 magnetic materials
the general term for the metal material adsorbed by the magnetic bar under
the operation conditions specified in this Standard
battery usually contain elemental or compound of iron, cobalt, chromium, nickel, zinc.
4 Determination principle
Disperse the sample in an ethanol medium. Scroll the sample for a certain
time using a magnetic bar with a certain magnetic field strength. Heat the
adsorbed magnetic particles in an acid solution to elute. Determine the
contents of iron, cobalt, chromium, nickel and zinc by inductively coupled
plasma atomic emission spectrometer. And calculate the sum of the contents
of the five elements.
5 Environmental conditions for determination
not exceeding 60%RH.
6 Reagents and materials
Warning - Some of the reagents used in this test method are toxic or
corrosive and shall be handled with care!
6.1 General requirements
Unless otherwise specified, the analytical reagents and the grade three
water specified in GB/T 6682-2008 are used in the analysis.
6.2 Nitric acid
The mass fraction is not less than 65%.
The mass fraction is not less than 36%.
6.4 Anhydrous ethanol
The mass fraction is not less than 99.7%.
6.5 Argon
The argon shall meet general requirements of GB/T 4842. The volume
fraction is not less than 99.999%.
6.6 Standard materials
6.6.1 Iron standard solution, with standard number of GSB04-1726-2004,
with the concentration of 1000 μg/mL.
>1.0 200±5.00
8.3 Adsorption of magnetic materials
Add 300 mL of anhydrous ethanol into the sample can containing sample.
Add into the clean magnetic bar. Cover the lid. After well shaking, place the
sample can on the rolling device. And set the rolling speed at 60 r/min ~ 80
r/min. Rolling 30 min and shake it not less than 3 times during the rolling
process.
8.4 Cleaning
After rolling, take the magnetic bar out and put into the conical flask. See
anhydrous ethanol. Ultrasound on the ultrasonic cleaning instrument 1 min.
Repeat three times. Then clean the magnetic bar and the conical flask three
times. After cleaning, it needs to use another magnetic bar at the bottom
outside the flask to absorb the magnetic bar inside the flask to prevent the
solution from falling out of the magnetic bar.
8.5 Digestion of magnetic materials
After cleaning, add into 1.5 mL of nitric acid, 4.5 mL of hydrochloric acid into
the conical flask equipped with the magnetic bar. Add into water to make the
magnetic bar totally immersed. Place onto the heating device to heat. Heat it
the heating process. During shaking, try to make the acid solution cover the
surface of the magnetic bar. After heating, remove it and naturally cool it to
room temperature. Move the cooled solution into a 100 mL volumetric flask.
Use a small amount of water to wash the conical flask and the magnetic bar
3~4 times. Incorporate the washing liquid into the volumetric flask. Set
volume and well shake it.
8.6 Preparation of blank sample
Carry out the blank test with the sample.
8.7 Determination
parameter setting. According to Table 1, select the element wavelength. Test
the series of mixed standard solution in sequence. Draw the working curve.
Then determine the sample blank and testing sample in the same method.
Use the deducted blank for result correction.
Annex B
(Informative)
Removal steps of magnetic bar and precautions
B.1 Steps
The steps are as follows.
b) use another magnetic bar to absorb the magnetic bar in the sample can;
c) hold the can body, uncover the inner and outer lids and place on the test
bench;
d) select the clean conical flask of corresponding number; the mouth of the
conical flask faces down, close to the sample can mouth; use another
hand to hold the conical flask and the sample can;
e) use another hand to hold the magnetic bar outside the sample bar which
absorbs the magnetic bar in the can; slowly lift it to make the magnetic
bar in the sample can into the conical flask;
successfully take the magnetic bar in the sample can out.
B.2 Precautions
The precautions are as follows.
a) the removal process shall prevent the magnetic bars inside and outside
the sample can contact with each other;
b) the removal process shall prevent the magnetic stick crumpled the
conical flask and cut the skin;
c) the waste and anhydrous ethanol used for magnetic materials shall be
properly treated (consider recycling).
|