标准搜索结果: 'GB/T 34334-2017英文版'
标准号码 | 内文 | 价格(元) | 第2步 | 交付天数[PDF] | 标准名称 | 相关标准 |
GB/T 34334-2017 |
英文版
| 380 |
购买全文
|
现货, 9秒内下载
|
光热玻璃反射镜面形测试方法
|
GBT 34334-2017
|
标准编号: GB/T 34334-2017 (GB/T34334-2017) 中文名称: 光热玻璃反射镜面形测试方法 英文名称: Test method of mirror shape for solar collector 行业: 国家标准 (推荐) 中标分类: Q34 国际标准分类: 81.040.30 字数估计: 14,128 发布日期: 2017-10-14 实施日期: 2018-09-01 起草单位: 北京奥博泰科技有限公司、中国建材检验认证集团股份有限公司、中海阳能源集团股份有限公司、中广核太阳能开发有限公司 归口单位: 全国工业玻璃和特种玻璃标准化技术委员会(SAC/TC 447) 提出机构: 中国建筑材料联合会 发布机构: 中华人民共和国国家质量监督检验检疫总局、中国国家标准化管理委员会
GB/T 34334-2017: 光热玻璃反射镜面形测试方法
GB/T 34334-2017 英文名称: Test method of mirror shape for solar collector
ICS 81.040.30
Q34
中华人民共和国国家标准
1 范围
本标准规定了基于条纹反射原理的光热反射镜面形测试方法的术语和定义、符号、测试原理、仪器、测试过程、参数计算和试验报告。
本标准适用于槽式、碟式、塔式用太阳能光热反射镜面形的测试。
4 测试原理
采用条纹反射原理进行光热玻璃反射镜面形测试。依据图形发生器、被测试样、图像采集器对应点
位置关系计算镜面各点斜率分布,进而求得倾斜偏差、聚焦偏差等面形参数,可由光线追迹法计算截断因子等集光参数。
5 仪器
5.1 组成
仪器由图形发生器、被测试样、图像采集器、样品台、计算机和测试软件等部分组成,测试原理示意
说明:
1 ---被测试样;
2 ---图形发生器;
3 ---图像采集器;
A---图形发生器上某点;
B---试样镜面测试点;
B'---图像采集器像面上的一点,与镜面上的B点共轭;
C---图像采集器光阑中心;
α ---入射光线或反射光线相对于法线的夹角;
β ---镜面测试点处法线方向与Z 轴的夹角;
ω ---反射光线与Z 轴的夹角。
5.2 数据采集及处理过程
5.2.1 建立测试坐标
建立测试坐标系XYZ,以XOY 面作为参考平面,Z 轴方向为参考方向,图形发生器和图像采集器
沿X 轴方向离轴分置。对于槽式反射镜,X 轴垂直于母线方向,Y 轴为母线方向。图1中A点坐标为
(XA,YA,ZA);B点坐标为(XB,YB,ZB);C点坐标为(XC,YC,ZC)。
5.2.2 确定测试点位置
镜面上的B点与图像采集器像面上的B'点为共轭点,根据图像采集器像面与镜面的成像对应关
系,并结合镜面方程可确定B点坐标(XB,YB,ZB)。图形发生器可分别产生平行于X、Y 方向的条纹,
平行于X 方向的条纹沿Y 方向进行扫描,由B'探测的时序光强可确定A点的位置坐标YA;平行于Y
方向的条纹沿X 方向进行扫描,由B'探测的时序光强可确定A点的位置坐标XA,由图形发生器的位
置可确定A点的位置坐标ZA,即得图形发生器上的A点坐标(XA,YA,ZA)。
5.2.3 获得测试点斜率及面形
由B'坐标可确定经C点(光阑中心)的光线与Z 轴的夹角ω,由∠ABC可计算出光线相对于法线的
夹角α,则镜面B点处法线方向与Z 轴的夹角β=α-ω。反射光线与Z 轴为逆时针方向夹角时ω为正
值。在测试坐标系下,被测点的切平面与XOY 面的夹角正切值,即为测试坐标系下的斜率。反射镜面
上各点B的面形斜率g在X 和Y 方向的分量gX、gY 分别由式(1)、式(2)计算:
5.2.4 获得面形参数
5.2.4.1 根据测试坐标系下所得反射镜面形,可计算出如下参数:面形高度偏差分布hd(X,Y)、面形高
度偏差均方根HD、在X 轴方向倾斜偏差分布sdX(X,Y)、在Y 轴方向倾斜偏差分布sdY(X,Y)、在X
轴方向的倾斜偏差均方根SDX、在Y 轴方向的倾斜偏差均方根SDY、在X 轴方向聚焦偏差分布fdX
(X,Y)、在Y 轴方向聚焦偏差分布fdY(X,Y)。
5.2.4.2 将测试坐标系XYZ 下的斜率分布gX(X,Y)、gY(X,Y),根据使用要求转换至使用坐标系
xyz下的斜率分布gx(x,y)、gy(x,y)。使用坐标系xyz中,以理想入射光方向为z轴,镜面母线方向
为y轴,垂直yoz平面方向为x轴。用线性插值或面积投影加权等方法,在使用坐标系xyz平面上,根
据参数计算要求,形成等间隔的斜率分布,结合太阳光发散角、集热装置口径,可计算出如下参数:在
x轴方向的聚焦偏差均方根FDx、在y 轴方向的聚焦偏差均方根FDy、平行光截断因子IC、太阳光截
断因子ICsun、吸热装置平行光截断因子分布RIC(φ)、会聚质量因子CQF。
5.3 要求
5.3.1 样品台样品台应满足被测样品的定位安装,样品定位精度应小于1mm。
5.3.2 图形发生器图形发生器可以由可生成动态图案的显示器或投影方式实现,显示区域应满足被测试样的完整反射面测试。
5.3.3 图像采集器
图像采集器应采用线性响应图像传感器,可以由多图像传感器拼接采集,实现大尺寸反射镜测试,
图像采集器采样点数、镜头焦距应满足样品尺寸和测试点数要求。
5.3.4 计算机及数据处理
计算机满足图像采集和数据处理要求。
数据处理用软件应具备面形解算功能,输出面形参数(HD、SDX、SDY、FDx、FDy、IC、ICsun、
CQF),面形参数二维分布图[hd(X,Y)、sdX(X,Y)、sdY(X,Y)、fdX(X,Y)、fdY(X,Y)、RIC(φ)]等结果。
5.3.5 校准反射镜
校准反射镜由已知面形的整体反射镜或平面拼接反射镜构成,其面形、角度关系稳定,斜率不确定
度不大于0.05mrad。应有重复定位装置,斜率重复定位误差不大于0.05mrad。
5.3.6 测量分辨率
在被测试样表面的测量空间分辨率不小于300点/m。
5.3.7 测量不确定度
倾斜偏差的测量不确定度应不大于0.5mrad。
倾斜偏差均方根扩展不确定度(k=2)不大于0.2mrad。
5.4 仪器调试
仪器调试应包含以下步骤:
a) 对图形发生器和图像采集器位置进行测量;
b) 对图形发生器的畸变进行校正;
c) 对图像采集器使用条件下的畸变进行校正;
d) 对样品支架坐标位置进行测量;
e) 根据校正结果,调整系统初始参数和初始条件;
f) 采用校准反射镜对测试系统进行核验。
6 测试过程
6.1 仪器核验
6.2 测试准备
测试前应进行如下准备:
a) 试样准备:清洁试样测试表面,被测表面应无灰尘、污渍。
b) 试样安装:将试样按测试的定位要求放置于样品台上,必要时按实际使用条件进行固定。
6.3 测试步骤
应按照如下步骤进行测试:
a) 图像发生器产生X 方向特定条纹,并沿Y 方向移向,采集记录相应的序列反射条纹图像;
b) 图像发生器产生Y 方向特定条纹,并沿X 方向移向,采集记录相应的序列反射条纹图像;
c) 对图像进行数据处理,分别解算出各点X 方向斜率分量gX、Y 方向的斜率分量gY;
7 参数计算
7.1 面形高度偏差计算
在测试坐标系下,以Z 轴方向为参考方向。
7.3 聚焦偏差计算
7.3.1 聚焦偏差示意图
在使用条件下,在反射镜面表面某一定点处的实际反射光线到反射镜理想焦点或焦线的距离为聚
焦偏差。X 方向的聚焦偏差示意图见图2,其中fdX即为聚焦偏差.
GB/T 34334-2017
GB
NATIONAL STANDARD OF THE
PEOPLE’S REPUBLIC OF CHINA
ICS 81.040.30
Q 34
Test method of mirror shape for solar collector
ISSUED ON. OCTOBER 14, 2017
IMPLEMENTED ON. SEPTEMBER 1, 2018
Issued by. General Administration of Quality Supervision, Inspection and
Quarantine;
Standardization Administration Committee.
Table of Contents
Foreword . 3
1 Scope .. 4
2 Terms and definitions .. 4
3 Symbols.. 5
4 Test principle .. 6
5 Instruments .. 6
6 Testing process .. 11
7 Parameter calculation .. 11
8 Test report .. 18
Foreword
This Standard was drafted in accordance with the rules given in GB/T 1.1-2009.
This Standard was proposed by China Federation of Building Materials.
This Standard shall be under the jurisdiction of National Technical Committee
on Industrial Glass and Special Glass of Standardization Administration of
China (SAC/TC 447).
The drafting organizations of this Standard. Beijing Aobotai Technology Co.,
Ltd., China Building Materials Inspection & Certification Group Co., Ltd., China
Haiyang Energy Group Co., Ltd., China Guangdong Nuclear Power
Development Co., Ltd.
Main drafters of this Standard. Bo Cong, Wang Jingjing, Zhang Zhemin, Li
Menglei, Wang Shanshan, Lu Jun, Zhang Yuxia, Yuan Jing, Wang Dong, Qiu
Juan, Li Boye, Li Yang, Wang Lichuang, Yang Fan, Feng Tian, Fu Lu, Zhu
Xiaowei, Zhang Ji, Yang Hui, Qi Bin.
Test method of mirror shape for solar collector
1 Scope
This Standard specifies the terms and definitions, symbols, test principle,
instruments, test procedures, parameter calculation and test report of mirror
shape for solar collector based on stripe reflection principle.
This Standard is applicable to the tests of mirror shape for slot, dish, tower solar
collectors.
2 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
2.1 height deviation
height deviation in the reference direction between the actual mirror and the
ideal mirror
2.2 slope
the tangent of the angle between the tangent plane and the reference plane at
a point on the reflector
2.3 slope deviation
the angle between the actual mirror normal and the ideal mirror normal at a
point on the mirror
2.4 focus deviation
under use conditions, the distance from the reflected light to the mirror's ideal
focus or focal line
2.5 focus deviation distribution
the distribution of focus point deviation of the mirror on the reference plane
2.6 parallel ray intercept factor
parallel light rays evenly distributed along the ideal direction of incidence, the
ratio of the amount of light reflected by the mirror to the heat sink to the amount
of light incident on the mirror
2.7 sun intercept factor
the ratio of the amount of sunlight reflected in the ideal direction of incidence to
the heat sink by the mirror TO the amount of light incident on the mirror
2.8 intercept factor distribution
take the diameter of the heat-absorbing device as the abscissa, the actual
mirror-parallel light-cutting factor of the corresponding caliber as the ordinate,
form the distribution curve of the parallel light-cutting factor under different
2.9 concentrating quality factor
the ratio of the area under the actual mirror parallel light cut-off factor
distribution curve TO the area under the ideal mirror parallel light cut-off factor
distribution curve with a use aperture of the heat-absorbing device as the
boundary condition of the parallel light cut-off factor distribution curve
3 Symbols
The following symbols apply to this document.
CQF. concentrating quality factor
FDx. mean square root of focus deviation in x-axis direction in the use
fdx (X, Y). focus deviation distribution in X-axis direction in the measurement
coordinate system (XYZ)
FDy. mean square root of focus deviation in y-axis direction in the use
coordinate system (xyz)
fdy (X, Y). focus deviation distribution in Y-axis direction in the measurement
coordinate system (XYZ)
HD. mean square root of height deviation in the measurement coordinate
system (XYZ)
hd (X, Y). mirror height deviation distribution in the measurement coordinate
IC. parallel ray intercept factor
ICsun. sun intercept factor
RIC(φ). parallel ray intercept factor distribution of heat absorption device
g (X, Y) - the slope at some fixed point (X, Y) on the tested mirror; its modulus
value is calculated according to equation (4).
5.2.4 Obtain mirror shape parameters
5.2.4.1 According to the mirror shape obtained from the measurement
coordinate system, the following parameters can be calculated. height deviation
distribution hd(X, Y), mean square root of height deviation HD, slope deviation
Y) in the Y axis direction, mean square root of slope deviation in X-axis direction
SDX, mean square root of slope deviation in Y-axis direction SDY, focus
deviation distribution in X-axis direction fdX (X, Y), focus deviation distribution
in X-axis direction fdY (X, Y).
5.2.4.2 Convert the slope distribution gx (X, Y), gy (X, Y) in the measurement
coordinate system XYZ to the slope distribution gx (x, y), gy (x, y) in the use
coordinate system xyz according to the use requirements. In the use coordinate
system xyz, the z-axis is the direction of the ideal incident light, the y-axis is the
mirror bus direction, and the x-axis is the vertical yoz plane direction. Use linear
xyz plane, according to the parameter calculation requirements, form an equal
interval slope distribution. Combined with the sun divergence angle and the
diameter of the heat collector, the following parameters can be calculated.
mean square root of focus deviation in x-axis direction FDx, mean square root
of focus deviation in y-axis direction FDy, parallel ray intercept factor IC, sun
intercept factor ICsun, parallel ray intercept factor distribution of heat absorption
device RIC(φ), concentrating quality factor CQF.
5.3 Requirements
5.3.1 Sample bench
The sample positioning accuracy shall be less than 1mm.
5.3.2 Graphic generator
The graphic generator can be implemented by a display or projection method
that can generate a dynamic pattern. The display area shall meet the complete
reflective mirror test of the tested sample.
sdX - the slope deviation of the surface test point of the test sample in the X-
axis direction, in milliradians (mrad);
β'X - the angle between the projection direction of the test point's measured
normal on the XOZ plane and the Z-axis, in milliradians (mrad);
on the XOZ plane and the Z axis, in milliradians (mrad).
See equation (8) for the calculation of the mean square root of slope deviation
of the tested sample SDX in X-axis direction.
where,
SDX - the mean square root of slope deviation of the tested sample, in
milliradians (mrad);
sdxi - the slope deviation of a certain test point on the surface of the test sample
in the direction of the X-axis direction, in milliradians (mrad);
n - total number of test points.
distribution of the slope deviation of each test point on the sample surface on
the XOY coordinate plane sdXi, represented in two-dimensional error map.
7.2.2 Mean square root of slope deviation in Y-axis direction SDY
In the measurement coordinate system, the slope deviation of the test point on
the tested sample surface in Y-axis direction sdY is equal to the angle between
the actual normal direction and the ideal normal direction of the test point on
the YOZ projection plane. See equation (9) for the calculation.
where,
sdY - the slope deviation of the test point on the tested sample surface in Y-axis
β'Y - the angle between the actual measured normal of test point on the
projection direction of YOZ and the Z-axis, in milliradians (mrad);
7.3.3 Mean square root of focus deviation in y-axis direction FDy
See equation (13) for the calculation of focus deviation fdY in the Y direction.
where,
fdY - the focus deviation of the test point on the tested sample surface along
with the Y direction, in millimeters (mm);
sdY - the slope deviation of the test point on the tested sample surface in the Y
direction, in milliradians (mrad);
focus or focal line, in millimeters (mm).
Convert the measurement coordinate system to use coordinate system.
Interpolation and other methods can be used to achieve uniform light sampling
and obtain the focus deviation fdY in the use coordinate system. The mean
square root of focus deviation in y-axis direction FDy is calculated according to
equation (14).
where,
FDy - the mean square root of focus deviation of tested sample in the y-axis
direction;
the Y direction;
m - total number of data points.
Use XOY plane as reference plane. The focus deviation distribution on the Y-
axis direction fdY (X, Y) is the distribution of the focus deviation of each test
point on the sample surface on the XOY coordinate plane fdYi, represented in
two-dimensional error map.
7.4 Intercept factor calculation
7.4.1 Calculation principle
The intercept factor can be calculated by ray tracing simulation, and the number
|