标准搜索结果: 'GB/T 4976-2017英文版'
标准号码 | 内文 | 价格(元) | 第2步 | 交付天数[PDF] | 标准名称 | 相关标准 |
GB/T 4976-2017 |
英文版
| 330 |
购买全文
|
现货, 9秒内下载
|
压缩机 分类
|
GBT 4976-2017
|
标准编号: GB/T 4976-2017 (GB/T4976-2017) 中文名称: 压缩机 分类 英文名称: Compressors -- Classification 行业: 国家标准 (推荐) 中标分类: J72 国际标准分类: 23.140 字数估计: 10,131 发布日期: 2017-05-12 实施日期: 2017-12-01 旧标准 (被替代): GB/T 4976-1985 采用标准: ISO 5390-1977, MOD 起草单位: 合肥通用机械研究院 归口单位: 全国压缩机标准化技术委员会(SAC/TC 145) 提出机构: 中国机械工业联合会 发布机构: 中华人民共和国国家质量监督检验检疫总局、中国国家标准化管理委员会 范围: 本标准规定了各种型式压缩机的分类及分类说明。本标准适用于输送和压缩各种压力下气体介质的压缩机。本标准不适用于通风机和真空泵。
GB/T 4976-2017: 压缩机 分类
GB/T 4976-2017 英文名称: Compressors -- Classification
ICS 23.140
J72
中华人民共和国国家标准
代替GB/T 4976-1985
1 范围
本标准规定了各种型式压缩机的分类及分类说明。
本标准适用于输送和压缩各种压力下气体介质的压缩机。
本标准不适用于通风机和真空泵。
2 总分类
压缩机的总分类如图1所示。部分类型压缩机的中英文对照及简图参见附录A。
3 分类说明
3.1 容积式压缩机:通过改变工作腔容积的大小,来提高气体压力的压缩机。
注:压缩分为内压缩和外压缩。内压缩的压力比又分为固定和变化两种。
3.2 往复压缩机:活塞在气缸内作往复运动或膜片在气缸内作反复变形,压缩气体来提高气体压力的容积式压缩机。
3.3 轴驱动压缩机:具有曲轴旋转运动的往复压缩机。
3.4 活塞压缩机:通过活塞在气缸中作往复运动来压缩气体的轴驱动压缩机。
3.5 隔膜压缩机:机械直接或液压驱动膜片变形,完成压缩循环的轴驱动压缩机。
3.6 自由活塞压缩机:通过对动活塞直接压缩介质,利用气垫作用或同步机构等方式来完成活塞返程
和同步的无曲轴往复压缩机。
3.7 线性压缩机:由线性电机直接驱动活塞来压缩气体的往复压缩机。
3.8 回转压缩机:通过一个或几个转子在气缸内作回转运动使工作容积产生周期性变化,从而实现气
体压缩的容积式压缩机。
3.9 涡旋压缩机:由动涡盘和静涡盘构成,并以动涡盘平动与静涡盘啮合为特征,实现压送气体的回转压缩机。
3.10 液环压缩机:通过工作轮旋转,在离心力作用下甩出液体,形成一个紧贴气缸内壁的液环,在两相
邻叶片与液环之间构成一周期性扩大与收缩的扇形空间,从而完成压送气体的回转压缩机。
3.11 滑片压缩机:在偏心配置的转子上装有径向往复运动的滑片,滑片紧贴气缸内壁并随转子旋转而
构成基元容积的周期变化,以达到压送气体的回转压缩机。
3.12 三角转子压缩机:依靠三角形旋转活塞在近似椭圆形气缸内运动,从而实现气体压缩的回转压缩机。
3.13 单螺杆压缩机:通过蜗杆与星轮的啮合运动实现压送气体的回转压缩机。
3.14 螺杆压缩机:通过两个螺旋形转子按一定的传动比相互啮合回转而压送气体的回转压缩机。
3.15 双转子压缩机:通过两个双叶或多叶转子彼此啮合并由同步齿轮带动作回转运动而压送气体的回转压缩机。
3.16 动力式压缩机:通过提高气体运动速度,将其动能转换为压力能来提高气体压力的压缩机。
3.17 透平压缩机:具有回转叶片、轮盘或叶轮的动力式压缩机。
3.18 轴流压缩机:气体在压缩机级内近似的在圆柱表面上沿轴线方向流动的透平压缩机。
3.19 离心压缩机:气体在叶轮叶道内沿径向方向流动的透平压缩机。
注:还有混流透平压缩机(其气体沿着介于轴向和径向之间的方向流动)和联合透平压缩机。
3.20 引射器:一种没有运动元件的动力式压缩机,利用高速气体或蒸汽喷射流带走吸入的气体,然后
通过转换混合气体的动能来提高气体的压力。
GB/T 4976-2017
GB
NATIONAL STANDARD OF THE
PEOPLE’S REPUBLIC OF CHINA
ICS 23.140
J 72
Replacing GB/T 4976-1985
Compressors - Classification
(ISO 5390.1977, MOD)
ISSUED ON. MAY 12, 2017
IMPLEMENTED ON. DECEMBER 01, 2017
Issued by. General Administration of Quality Supervision, Inspection and
Quarantine;
Standardization Administration of PRC.
Table of Contents
Foreword ... 3
1 Scope ... 5
2 General Classification ... 5
3 Classification Instructions ... 5
Appendix A (Informative) CHINESE--English Comparison and Simplified
Diagram for Partial Types of Compressors ... 8
Appendix B (Informative) Technical Differences and Causes between this
Standard and ISO 5390.1977 ... 11
Foreword
This Standard was drafted as per the rules specified in GB/T 1.1-2009.
This Standard replaced GB/T 4976-1985 Compressors – Classification. Compared
with GB/T 4976-1985, this Standard has the major technical differences as follows
besides the editorial modifications.
--- Add partial compressor types to the general classification (see Figure 1 of this
Edition; Figure 1 of 1985 Edition);
--- Add 12 items of classification instructions for the compressors (see 3.2, 3.4~3.7,
3.9~3.15 of this Edition);
--- Modify the classification instructions for positive-displacement compressor (see
3.1 of this Edition; 3.1 of 1985 Edition);
--- Modify the classification instructions for axle-driven compressor (see 3.3 of this
Edition; 3.1.1 of 1985 Edition);
--- Modify the classification instructions for rotary compressor (see 3.8 of this Edition;
3.1.2 of 1985 Edition);
--- Modify the classification instructions for dynamic compressor (see 3.16 of this
Edition; 3.2 of 1985 Edition);
--- Modify the classification instructions for axial flow compressor (see 3.18 of this
Edition; 3.2.1.1 of 1985 Edition);
--- Modify the classification instructions for centrifugal compressor (see 3.19 of this
Edition; 3.2.1.2 of 1985 Edition);
--- Modify the classification instructions for ejector (see 3.20 of this Edition; 3.2.2 of
1985 Edition).
This Standard adopts re-drafting method to modify and use ISO 5390.1977
Compressors – Classification.
Compared with ISO 5390.1977, this Standard has the technical differences; the clause
and sub-clause involved in these technical differences have been marked by the
vertical single line (|) at the outer margin; Appendix B gives the table listed the
corresponding technical differences and its causes.
This Standard also makes the following editorial changes.
a) Modify term in A.1 “Crankshaft reciprocating piston compressor”, which is
replaced by a briefer one of “Piston compressor”;
NOTE. Compression can be divided into internal and external compression. The pressure of
internal compression can be further divided into the fixed and changeable ones.
3.2 Reciprocating compressor. positive-displacement compressor that improves the
gas pressure through compressing gas by the reciprocation motion of the piston in the
cylinder or repeated deformation of the diaphragm in the cylinder.
3.3 Axle-driven compressor. reciprocating compressor with the crankshaft rotary
motion.
3.4 Piston compressor. axle-driven compressor that compresses the gas through
reciprocating motion of the piston in the cylinder.
3.5 Diaphragm compressor. axle-driven compressor that finishes compression cycle
through direct-machinery-or-hydraulic-driven diaphragm deformation.
3.6 Free piston compressor. reciprocating compressor without crankshaft that
finishes the piston return and synchronization through directly using dynamic piston to
compress medium, utilizing the air cushion or synchronizing mechanisms.
3.7 Linear compressor. reciprocating compressor that compresses gas through
3.8 Rotary compressor. positive-displacement compressor that realizes the gas
compression through rotary motion of one or several rotors in the cylinder, further
making the working volume change regularly.
3.9 Scroll compressor. rotary compressor consisting of orbiting and fixed scroll; it
realizes the gas transportation and compression through horizontally moving of
orbiting scroll and meshing of the fixed scroll.
3.10 Liquid ring compressor. rotary compressor that finishes the gas transportation
and compression through forming a liquid ring close to the inner wall of cylinder by
liquid that is thrown under the centrifugal force caused by rotation of working wheel,
adjacent blades and the liquid ring.
3.11 Vane compressor. rotary compressor that realizes the gas transportation and
compression through eccentric rotor equipped with radial reciprocating vane, vane
close to the inner wall of cylinder and rotated with rotor to form the periodically change
of the elementary volume.
3.12 Triangle rotor compressor. rotary compressor that realizes the gas compression
through rotating the piston by the triangle in the approximately elliptical cylinder.
3.13 Mono-rotor screw compressor. rotary compressor that realizes gas
transportation and compression through the meshing motion between worm and the
3.14 Screw compressor. rotary compressor that realizes gas transportation and
compression through two helical rotors at a certain transmission ratio intermeshing and
rotation.
3.15 Two-spool compressor. rotary compressor that realizes gas transportation and
compression through two double-lobed or multi-lobed rotors intermeshing, rotating by
synchronous gear.
3.16 Dynamic compressor. compressor that improves the gas pressure through
improving converting its kinetic energy into pressure energy by increasing the speed
of gas motion.
impellers.
3.18 Axial flow compressor. turbine compressor that gas flows approximately axially
on a cylindrical surface within a compressor stage.
3.19 Centrifugal compressor. turbine compressor that gas flows in radial direction
within the impeller channels.
NOTE. there are also mixed-flow turbine compressor (gas flows along the direction between
axial and radial ones) and combined turbine compressor.
3.20 Ejector. a type of dynamic compressor without moving elements that improves
the gas pressure through using high velocity gas or steam jet flow to carry off the
|